If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+78=0
a = -16; b = 0; c = +78;
Δ = b2-4ac
Δ = 02-4·(-16)·78
Δ = 4992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4992}=\sqrt{64*78}=\sqrt{64}*\sqrt{78}=8\sqrt{78}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{78}}{2*-16}=\frac{0-8\sqrt{78}}{-32} =-\frac{8\sqrt{78}}{-32} =-\frac{\sqrt{78}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{78}}{2*-16}=\frac{0+8\sqrt{78}}{-32} =\frac{8\sqrt{78}}{-32} =\frac{\sqrt{78}}{-4} $
| -8v+7=-9v | | 32=(n-7) | | -16t^2+71=0 | | 4c=7+5c | | -2s=-3s-9 | | X+2x+25+2x+30=180 | | 3/8x-2=10 | | (x+1)+x=545 | | (4+9+16÷4)-8-3×5=x | | 16=3(u+9)+16 | | -2(w-2)=-6 | | x+36/7=3 | | -3(z+7)=0 | | 1.5-0.03x=-0.57 | | 2c+8c=-20 | | -3+p/9=-5 | | 2-c=-9 | | x/2=1/6+7x/18 | | 7x-29=60 | | 5u+6=42 | | x/2=1/6-7x | | c+9/2=3 | | 29.5=x/10 | | 20j-16j=16 | | 2a+4=4a-6 | | 2j+-3j=17 | | 7x=399 | | 6x+3+4x+4=67 | | X+3x+6x+10=180 | | 11n-8n=18 | | 2(g-8)=16 | | 9x+4=2×+6 |